IndoTERM: The basic concept, theoretical foundation, and assumption

Day 1 Session 2

Workshop on Modeling Connectivity with IndoTERM CGE MODEL

Stylized GE model: material flows

			Producers			Absorption		Total	
		Primary	Manufact	Services	H'holds	Invest	Govmt	Export	Demand
	Primary	5	10	2	1	0	0	15	33
Domestic	Manufact	5	15	10	15	15	10	10	80
goods	Services	5	13	20	30	5	20	5	98
	Primary	1	2	0	0	0	0		3
Imported goods	Manufact	1	3	2	3	3	2		14
	Services	1	3	4	6	1	4		19
Primary	Labour	7	17	40					
factors	Capital	8	17	20					
Total	cost	33	80	98					

Stylized GE model: database table of transaction values

Simplifications: no taxes, one region only

Production costs = Domestic sales of domestic good

We need to determine a quantity for each cell, and a price for each row

Stylized GE model: demand equations										
	Producer i	Absorption <u>CIG</u>	Export	Total Demand						
Domestic good c	Q _i F(P/PD _c)	$E_u F(P, PD_c)$	F (1/ PDc)	Q _c = sum(left)						
Imported good c	$Q_i F(P/PM_c)$	$E_u F(P, PM_c)$		Supply = demand						
Primary factor f	$Q_i F(P/PF_f)$	QF _f = sum(left)								
Production cost	total cost of above = PD _i Q _i	C (osts Sales							
Notation:	PD _c = price dom good c	PM _c = price imp good c	PF _f = price factor f	<i>P</i> = full price vector [PD,PM,PF]						
	Q _i = output good i	F = various functions	QF _f = supply factor f	E _u = expenditure final user ₅ u						

Stylized CGE model: Number of equations = number endogenous variables

Variable Determined by:

```
PD_c = priceZERO PURE PROFITSdom good cvalues of sales = PD_cQ_c = sum(input costs) = F(all variables)Q_c = outputMARKET CLEARINGgood cQ_c = sum(individual demands) = F(all variables)
```

```
PF<sub>f</sub> = price
factor f
QF<sub>f</sub> = quantity
factor f
For each f, one of PF or QF fixed,
the other determined by:
QF<sub>f</sub> = sum(individual demands) = F(all variables)
```

Eu = spending
final user ueither fixed, or linked to factor incomes (with more equations)PMc = price
imp good cfixedRed: exogenous (set by modeler)

Green: endogenous (explained by system)

IndoTERM

IndoTERM, contains:

- 39 sectors,
- 30 regions,
- 4 labour types,
- 1 household type

Coefficients and Variables

Coefficients example: USE(c,s,u,d) Mostly values Either read from file or computed with formulae Constant during each step Variables example: puse (c,s,d) Often prices or quantities Percent or ordinary change **Related via equations Exogenous or endogenous** Vary during each step

UPPER CASE

lower case

The TERM Naming System

or GLOSS

COFFEICIENT	
variable Prefix	Name Partmarmarginscapcapitaltaxindirect taxeslablabourpurat purchasers' pricesIndlandimpimports (duty paid)primall primary factorstottotal inputs for a user
none for levels flow	LAB(i,o,d) s Source (dom/imp)
p % price	plab_o(i,d) i INDustries m MARgin o OCCupation d.r.p Region
x % quantity	xlab_id(o)
del ord.change	Underscore means

"adding up over"

Core Data and Variables

We begin by declaring variables and data coefficients which appear in many different equations.

Other variables and coefficients will be declared as needed.

PRIMARY FACTOR USE

Nested Structure of production

In each industry: Output = function of inputs:

output = F(inputs) = F(Labour, Capital, Land, dom goods, imp goods)

Separability assumptions simplify the production structure:

output = F(primary factor composite, composite goods)

where:

primary factor composite = CES(Labour, Capital, Land)

labour = CES(Various skill grades)

composite good (i) = CES(domestic good (i), imported good (i))

All industries share common production structure.

BUT: Input proportions and behavioural parameters vary.

Nesting is like staged decisions:

<u>First</u> decide how much leather to use—based on output.

<u>Then</u> decide import/domestic proportions, depending on the relative prices of local and foreign leather.

Each nest requires 2 or 3 equations.

Skill Mix

Problem: for each industry i, choose labour inputs XLAB(i,o,d) to minimize labour cost:

```
sum{o,OCC, <mark>PLAB(i,o,d)</mark>*XLAB(i,o,d)}
```

such that XLAB_O(i) = CES(All,o,OCC: XLAB(i,o,d))

Coefficient

(all,i,IND) SIGMALAB(i) # CES substitution between skills #;

```
(all,i,IND)(all,d,DST) LAB_O(i,d) # Total labour bill in industry i #;
```

Read SIGMALAB from file INFILE header "SLAB";

```
Formula (all,i,IND)(all,d,DST)
```

```
LAB_O(i,d) = sum{o,OCC, LAB(i,o,d)};
```


The problem of zeroes: ID01 function E plab o # Price to each industry of labour composite # (all,i,IND) (all,d,DST) LAB_O(i,d)*plab_o(i,d) = sum{o,OCC, LAB(i,o,d)*plab(i,o,d)}; same as plab o(i,d) = sum{o,OCC, [LAB(i,o)/LAB_O(i)]* plab(i,o)}; Skill share What if industry used no labour -- a problem ! ID01(X) = 1 if X=0 otherwise = X

ID01[LAB_O(i,d)]*plab_o(i,d) = sum{o,OCC, LAB(i,o,d)*plab(i,o,d)};

```
if no labour gives: plab_o(i,d) = 0 (satisfactory)
otherwise gives:
LAB_O(i,d)*plab_o(i,d) = sum{o,OCC, LAB(i,o,d)*plab(i,o,d)};
```


Primary factor Mix

XLND(i,d)/ALND(i,d)

quantityaugmenting technical change

Equation

E_xlab_o # Industry demands for effective labour #
 (all,i,IND)(all,d,DST) xlab_o(i,d) - alab_o(i,d) =
 xprim(i,d) - SIGMAPRIM(i)*[plab_o(i,d) + alab_o(i,d) - pprim(i,d)];

E_pcap # Industry demands for capital #
 (all,i,IND)(all,d,DST) xcap(i,d) - acap(i,d) =
 xprim(i,d) - SIGMAPRIM(i)*[pcap(i,d) + acap(i,d) - pprim(i,d)];

E_pInd # Industry demands for land #
 (all,i,IND)(all,d,DST) xInd(i,d) - alnd(i,d) =
 xprim(i,d) - SIGMAPRIM(i)*[pInd(i,d) + alnd(i,d) - pprim(i,d)];

E_pprim # Effective price term for factor demand equations #
 (all,i,IND)(all,d,DST)
PRIM(i,d)*pprim(i,d) = LAB_O(i,d)*[plab_o(i,d) + alab_o(i,d)]
+ CAP(i,d)*[pcap(i,d) + acap(i,d)] + LND(i,d)*[plnd(i,d) + alnd(i,d)];

Intermediate Sourcing

SAME FOR HOU AND INV USERS

INTERMEDIATE USE

Intermediate Sourcing

```
E_xint (all,c,COM)(all,s,SRC)(all,i,IND)(all,d,DST)
xint(c,s,i,d) = xint_s(c,i,d) - SIGMADOMIMP(c)*[ppur(c,s,i,d)-ppur_s(c,i,d)];
```

$$x_{s} = x_{average} - s[p_{s} - p_{average}]$$
$$p_{average} = \sum S_{s} \cdot [p_{s}]$$

SAME FOR HOU AND INV USERS

Numerical Example of CES demands

feel for numbers

 $p = S_d p_d + S_m p_m$ average price of dom and imp Food

 $x_d = x - \sigma(p_d - p)$ demand for domestic Food

 $x_m = x - \sigma(p_m - p)$ demand for imported Food

Let p_m=-10%, x=p_d=0

Let $S_m = 0.3$ and $\sigma = 2$. This gives: p = -0.3*10 = -3 $x_d = -2(-3) = -6$ $x_d = x - S_m \sigma(p_d - p_m)$ $x_m = -2(-10 - -3) = 14$ $x_m = x - S_d \sigma(p_m - p_d)$ Cheaper imports cause 14% increase in import volumes

and 6% fall in domestic demand.

Effect on domestic sales is proportional to both S_m and σ .

THE TRADE SYSTEM

TRADE("machi","dom")

User or destination region

_											
	TRADE	1 NAD	2 SUMUT	3 SUMBAR	4 RIAU	5 JAMBI	6 SUMSEL	7 BABEL	8 BENGKULU	9 LAMPUNG	10 DK
	1 NAD	0,053	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
_	2 SUMUT	301	740	172	2,15	31,2	108	2,70	16,9	53,1	0,913
Producer	3 SUMBAR	0,002	0,001	0,038	0,000	0,000	0,002	0,000	0,000	0,001	0,000
or	4 RIAU	252	1097	312	13076	254	676	36,7	66,3	252	74,9
01	5 JAMBI	0,000	0,000	0,001	0,000	0,013	0,007	0,000	0,000	0,001	0,000
source	6 SUMSEL	0,001	0,001	0,000	0,000	0,001	0,076	0,000	0,000	0,005	0,000
ragion	7 BABEL	0,000	0,000	0,000	0,000	0,000	0,001	0,005	0,000	0,000	0,000
region	8 BENGKULU	0,000	0,000	0,001	0,000	0,000	0,003	0,000	0,006	0,001	0,000
	9 LAMPUNG	0,000	0,000	0,000	0,000	0,000	0,002	0,000	0,000	0,036	0,000
	10 DKI	255	798	312	36,1	90,5	344	83,2	49,7	295	9406
	11 JABAR	2650	8387	2963	3709	912	3532	675	501	2917	42782
	12 BANTEN	32,6	103	37,1	45,7	11,7	46,8	10,3	6,29	35,8	962
	13 JATENG	18,5	39,5	17,5	0,552	5,82	23,5	2,99	3,19	18,7	3,05
	14 DIY	3,39	9,58	3,08	0,874	1,06	4,29	0,516	0,582	3,34	3,92
	15 JATIM	32,3	34,6	27,5	0,991	10,5	43,4	3,99	5,28	30,8	3,04
	16 KALBAR	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000

One matrix for each domestic commodity and each imported. Diagonal shows goods produced and used in same region. Row and column totals given by USE matrix. Otherwise, made up by gravity and other assumptions.

TRADE("machi","imp")

User or destination region

		22 SULTENG	23 SULSEL	24 SULTRA	25 BALI	26 NTB	27 NTT	28 MALUKU	29 MALUT	30 PAPUA	Total
	1 NAD	1,03	0,009	1,76	2,14	2,82	1,35	0,587	0,231	8,81	1402
	2 SUMUT	7,21	0,283	12,8	15,6	20,5	9,33	4,09	1,53	55,2	5508
	3 SUMBAR	1,07	0,278	1,95	2,89	3,71	1,59	0,612	0,222	8,24	1622
Arrival	4 RIAU	5,92	0,248	10,4	12,8	16,1	7,19	2,99	1,10	38,6	8835
nort	5 JAMBI	0,175	0,001	0,286	0,390	0,432	0,239	0,075	0,039	1,38	137
port	6 SUMSEL	1,01	0,005	1,53	2,32	2,36	1,46	0,350	0,241	8,97	916
region	7 BABEL	0,232	0,001	0,393	0,563	0,652	0,282	0,103	0,041	1,44	147
	8 BENGKULU	0,032	0,000	0,048	0,083	0,079	0,049	0,010	0,008	0,285	18,8
	9 LAMPUNG	2,88	0,860	5,17	7,27	9,56	4,25	1,70	0,618	23,4	2310
	10 DKI	6,72	3,26	13,6	29,1	32,4	11,3	3,62	1,19	44,6	41232
	11 JABAR	0,037	0,004	0,071	3,36	0,182	1,21	0,019	0,122	4,5	355
	12 BANTEN	0,500	0,003	0,978	2,09	2,30	0,846	0,259	0,091	2,47	1825
	13 JATENG	11,7	5,99	24,2	82,2	75,9	21,1	5,74	1,82	67,3	14611
	14 DIY	0	0	0	0	0	0	0	0	0	0
	15 JATIM	18,7	1,24	39,8	253	172	36,8	8,55	2,65	96,5	13862
	16 KALBAR	0,881	0,005	1,41	2,42	2,36	1,10	0,297	0,1/7	4,96	226

provinces have big ports

Market clearing for domestic goods

E_xtrad_d (all,c,COM)(all,s,SRC)(all,r,ORG)
TRADE_D(c,s,r)*xtrad_d(c,s,r)
= sum{d,DST, TRADE(c,s,r,d)*xtrad(c,s,r,d)};

Equation E_pdomA # Demand = supply for non-margins # (all,c,NONMAR)(all,r,REG) xcom(c,r) = xtrad_d(c,"dom",r);

```
Equation E_pdomB # Demand = supply for margins #
(all,m,MAR)(all,p,REG) MAKE_I(m,p)*xcom(m,p) =
TRADE_D(m,"dom",p)*xtrad_d(m,"dom",p) + SUPPMAR_RD(m,p)*xsuppmar_rd(m,p);
```

HOUSEHOLD DEMAND

Equation E_xhou_s (all,c,COM)(all,d,DST) xhou_s(c,d) = sum{h,HOU, HOUSHR(c,h,d)*xhouh_s(c,h,d)};

Top Nest of Household Demands

Klein-Rubin: a non-homothetic utility function

Homothetic means:

budget shares depend only on prices, not incomes

eg: CES, Cobb-Douglas

Non-homothetic means:

rising income causes budget shares to change

even with price ratios fixed.

Non-unitary expenditure elasticities:

I% rise in total expenditure might cause food expenditure to rise by 1/2%; air travel expenditure to rise by 2%.

Other names: Stone-Geary

or LES: linear expenditure system

Linear Expenditure System

Total expenditure = subsistence cost + luxury expenditure

supernumerary

```
PHOU(c) *XHOU(c) = PHOU(c) *XSUB(c) + SLUX(c) *LUX_C
```

PHOU(c) *XHOU(c) = PHOU(c) *XSUB(c) + SLUX(c) *[HOU_C - \sum {PHOU(c) *XSUB(c)}] all subsistence costs

Expenditure on each good is a linear function of prices and income

Model demand equations

Total demand = subsistence demand + luxury demand

Equation E_xsub # Subsistence demand for composite commodities # (all,c,COM)(all,h,HOU)(all,d,DST) xsub(c,h,d) = nhouh(h,d) + asub(c,h,d);

E_xlux # Luxury demand for composite commodities #
(all,c,COM)(all,h,HOU)(all,d,DST)
xlux(c,h,d) + phou(c,d) = wlux(h,d) + alux(c,h,d);

E_xhouh_s # Total household demand for composite commodities #
(all,c,COM)(all,h,HOU)(all,d,DST)
xhouh_s(c,h,d) = BLUX(c,h,d)*xlux(c,h,d) + [1-BLUX(c,h,d)]*xsub(c,h,d);

How many parameters -degree of flexibility

```
No of parameters =
```

extra numbers needed to specify percent change form IF EXPENDITURE VALUES ARE ALREADY KNOWN

Example, CES=1:

with input values known, 1 number, σ , is enough.

Example, CobbDouglas=0:

with input values known, we know all.

Example, Leontief=0:

with input values known, we know all.

- How many parameters is Klein-Rubin/LES?
- We need to divide expenditure on each good

into subsistence and luxury parts.

(all,c,COM) BLUX(c) # Ratio,supernumerary/total expenditure#;

One BLUX parameter for each commodity.

In levels, more parameters are needed.

These "parameters" change !

INVENTORY DEMAND

E_xinv_s (all,c,COM)(all,d,DST) INVEST_I(c,d)*xinv_s(c,d)= sum{i,IND, INVEST(c,i,d)*xinvi(c,i,d)}; ³⁸

Investment Composition differs by Industry

IND

Composition of Investment

Each industry has its own fixed recipe to make its new capital.

Equation E_xinvi (all,c,COM)(all,i,IND)(all,d,DST) xinvi(c,i,d) = xinvitot(i,d);

Driving industry Investment

```
Variable

(all,i,IND)(all,d,DST) gret(i,d)

# Gross rate of return = Rental/[Price of new capital] #;

(all,i,IND)(all,d,DST) ggro(i,d)

# Gross growth rate of capital = Investment/capital #;

(all,i,IND)(all,d,DST) finv1(i,d) # Investment shift variable #;

invslack # Investment slack variable for exogenizing national investment #;
```

```
Equation
```

```
E_gret (all,i,IND)(all,d,DST) gret(i,d) = pcap(i,d) - pinvitot(i,d);
E_xinvitot (all,i,IND)(all,d,DST) ggro(i,d) = xinvitot(i,d) - xcap(i,d);
```

```
Equation E_ggro # DPSV investment rule #
(all,i,IND)(all,d,DST) ggro(i,d) = finv1(i,d) + 0.33*[2.0*gret(i,d) -invslack];
```

INVESTMENT/CAPITAL ratio GGRO is either

- fixed -- in long run, or
- related to sector profits

Longrun Investment Rule

Investment/capital ratios GGRO are exogenous

E_xinvitot (all,i,IND)(all,d,DST) ggro(i,d) = xinvitot(i,d) - xcap(i,d);

GOVERNMENT & EXPORT DEMAND

Government demands

Equation E_xgov (all,c,COM)(all,s,SRC)(all,d,DST) xgov(c,s,d) = fgovtot(d) + fgov(c,s,d) + fgov_s(c,d) + fgovgen;

```
Equation E_fgovtot2 (all,d,REG)
fgovtot(d) = fgovtot2(d) + MainMacro("RealHou",d);
```

Shift variables fgovtot and fgovtot2 used to switch between two rules. With fgovtot2 exogenous, fgovtot endogenous, we get

xgov(c,s,d) = MainMacro("RealHou",d) + fgovtot2(d) + fgov(c,s,d) +
fgov_s(c,d) + fgovgen;

ie: gov. demands follow real household consumption

```
with fgovtot exogenous, fgovtot2 endogenous, we get
xgov(c,s,d) = fgovtot(d) + fgov(c,s,d) + fgov_s(c,d) + fgovgen;
ie: gov. demands are exogenous
```

Export demands

Coefficient (all,c,COM) EXP_ELAST(c)

Export demand elasticities: typical value 5.0 #;

Variable

(all,c,COM)(all,s,SRC) fqexp(c,s) # Export quantity shift variable #; (all,c,COM)(all,s,SRC) fpexp(c,s) # Export price shift variable #; (all,c,COM)(all,d,DST) xexp_s(c,d) # Export demands, dom+imp #;

```
Equation E_xexp (all,c,COM)(all,s,SRC)(all,d,DST)
xexp(c,s,d) = fqexp(c,s) - EXP_ELAST(c)
* [ppur(c,s,"Exp",d) -fpexp(c,s) -phi];
```

MARKET CLEARING

Coefficient

(all,c,COM)(all,s,SRC)(all,r,REG) TRDIAG(c,s,r) # Trade matrix diagonal #; (all,c,COM)(all,s,SRC)(all,r,ORG) TRADE_D(c,s,r) # Total direct demands #; (all,c,COM)(all,s,SRC)(all,d,DST) TRADE_R(c,s,d) # Total direct demands #; (all,c,COM)(all,s,SRC) TRADE_RD(c,s) # Total national direct demands #;

Formula

(all,c,COM)(all,s,SRC)(all,r,REG) TRDIAG(c,s,r) = TRADE(c,s,r,r); (all,c,COM)(all,s,SRC)(all,r,ORG) TRADE_D(c,s,r) = sum{d,DST, TRADE(c,s,r,d)}; (all,c,COM)(all,s,SRC)(all,d,DST) TRADE_R(c,s,d) = sum{r,ORG, TRADE(c,s,r,d)}; (all,c,COM)(all,s,SRC) TRADE_RD(c,s) = sum{r,ORG, TRADE_D(c,s,r)}; Variable

(all,c,COM)(all,s,SRC)(all,r,ORG) xtrad_d(c,s,r) # Total direct demands for goods produced(dom) or landed(imp) in r #; Equation E_xtrad_d (all,c,COM)(all,s,SRC)(all,r,ORG) ID01(TRADE_D(c,s,r))*xtrad_d(c,s,r) = sum{d,DST, TRADE(c,s,r,d)*xtrad(c,s,r,d)};

Equation E_xtrad_r (all,c,COM)(all,s,SRC)(all,d,DST) ID01(TRADE_R(c,s,d))*xtrad_r(c,s,d) = sum{r,ORG, TRADE(c,s,r,d)*xtrad(c,s,r,d)};

Equation E_pdomA # Supply = demand for non-margins # (all,c,NONMAR)(all,r,REG) xcom(c,r) = xtrad_d(c,"dom",r);

Equation E_pdomB # Demand = supply for margins # (all,m,MAR)(all,p,REG) MAKE_I(m,p)*xcom(m,p) = TRADE_D(m,"dom",p)*xtrad_d(m,"dom",p) + SUPPMAR_RD(m,p)*xsuppmar_rd(m,p);